o
    Tæ«dd½  ã                   @   sô	  d dl Z d dlZd dlZd dlZd dlmZ d dlmZ d dl	m
Z
mZmZmZmZmZmZ d dlmZmZmZmZmZmZ d dlmZmZ d dlmZ dd	„ Zd
d„ Zdd„ Zdd„ Z dd„ Z!dd„ Z"dd„ Z#e
e$ej%ej%ƒdd„ ƒZ&e
ej'ej%ej%ƒe
ej(ej%ej%ƒdd„ ƒƒZ)e
ej*ej%ej%ƒe
ej+ej%ej%ƒdd„ ƒƒZ,e
ej-ej%ej%ƒe
ej.ej%ej%ƒdd„ ƒƒZ/dd„ Z0d d!„ Z1e
ej2ej%ej3ƒe
ej4ej%ej3ƒe
ej2ej5ej3ƒe
ej4ej5ej3ƒd"d#„ ƒƒƒƒZ6d$d%„ Z7d&d'„ Z8d(d)„ Z9d*d+„ Z:d,d-„ Z;d.d/„ Z<d0d1„ Z=d2d3„ Z>d4d5„ Z?d6d7„ Z@d8d9„ ZAd:d;„ ZBd<d=„ ZCd>d?„ ZDd@dA„ ZEdBdC„ ZFdDdE„ ZGdFdG„ ZHdHdI„ ZIdJdK„ ZJdLdM„ ZKdNdO„ ZLdPdQ„ ZMe
ejNejOejOƒe?ƒ e
ejPejOejOƒe@ƒ e
ejQejOejOƒe;ƒ e
ejRejOejOƒe<ƒ e
ejSejOejOƒe=ƒ e
ejTejOejOƒe>ƒ e
ejUejOƒeLƒ e
ejVejOƒeMƒ dRdS„ ZWdTdU„ ZXeWƒ  eXƒ  dVdW„ ZYdXdY„ ZZdZd[„ Z[d\d]„ Z\d^d_„ Z]d`da„ Z^e
e$ej5ej5ƒdÌdbdc„ƒZ_dÌddde„Z`dÌdfdg„Zadhdi„ Zbdjdk„ Zcdldm„ Zddndo„ Zedpdq„ Zfdrds„ Zgdtdu„ Zhdvdw„ Zidxdy„ Zjdzd{„ Zkd|d}„ Zlej5Zme
ejnememƒeYƒ e
ejoememƒeYƒ e
ejpememƒeZƒ e
ejqememƒeZƒ e
ejrememƒe[ƒ e
ejsememƒe[ƒ e
ej'ememƒeaƒ e
ej(ememƒeaƒ e
ej*ememƒe\ƒ e
ej+ememƒe\ƒ e
ej-ememƒe`ƒ e
ej.ememƒe`ƒ e
ej2ememƒebƒ e
ej4ememƒebƒ e
e2ememƒebƒ e
ejNememƒegƒ e
ejPememƒehƒ e
ejQememƒecƒ e
ejRememƒedƒ e
ejSememƒeeƒ e
ejTememƒefƒ e
etemƒeiƒ e
ejUemƒejƒ e
ejVemƒekƒ [meejud~ƒdd€„ ƒZveejudƒd‚dƒ„ ƒZwe
d„ejuƒd…d†„ ƒZxd‡dˆ„ Zyd‰dŠ„ Zzd‹dŒ„ Z{ej5ej%fD ]Z|ee|d~ƒeyƒ ee|dƒezƒ e
d„e|ƒe{ƒ qe
ej2ejuejuƒe
ej4ejuejuƒe
e2ejuejuƒddŽ„ ƒƒƒZ}dd„ Z~d‘d’„ Zd“d”„ Z€ed•ƒZ‚d–d—„ Zƒd˜d™„ Z„dšd›„ Z…dœd„ Z†dždŸ„ Z‡d d¡„ ZˆejuZme
ejnememƒe~ƒ e
ejoememƒe~ƒ e
ejpememƒeƒ e
ejqememƒeƒ e
ejrememƒe€ƒ e
ejsememƒe€ƒ e
ej*ememƒeƒƒ e
ej+ememƒeƒƒ e
ejUemƒe„ƒ e
ejVemƒe…ƒ e
ejNememƒe†ƒ e
ejPememƒe‡ƒ e
etemƒeˆƒ [me
d¢ej‰ƒe
d¢ejŠƒd£d¤„ ƒƒZ‹d¥d¦„ ZŒe
eej‰ƒd§d¨„ ƒZŽe
eej%ƒd©dª„ ƒZe
eej5ƒd«d¬„ ƒZe
eejuƒd­d®„ ƒZ‘ej%ej5ejufD ]Zme
ej’emƒeŒƒ qe
ej’ejOƒeŒƒ eej3ej%ƒeej3ej5ƒeej3ejuƒd¯d°„ ƒƒƒZ“eej%ej%ƒd±d²„ ƒZ”eej%ej•ƒd³d´„ ƒZ–eej5ej5ƒdµd¶„ ƒZ—eej%ej5ƒd·d¸„ ƒZ˜eej5ej%ƒd¹dº„ ƒZ™eej5ejuƒeej%ejuƒd»d¼„ ƒƒZšeejuejuƒd½d¾„ ƒZ›eejœej‰ƒd¿dÀ„ ƒZeej‰ejŠƒdÁdÂ„ ƒZžeej3ej‰ƒeejŸej‰ƒdÃdÄ„ ƒƒZ eejuƒdÅdÆ„ ƒZ¡eej%ƒeej5ƒeej‰ƒdÇdÈ„ ƒƒƒZ¢dÉdÊ„ Z£eej5dËƒe£ƒ eej%dËƒe£ƒ dS )Íé    N)Úir)ÚConstant)Úlower_builtinÚlower_getattrÚlower_getattr_genericÚ
lower_castÚlower_constantÚimpl_ret_borrowedÚimpl_ret_untracked)ÚtypingÚtypesÚutilsÚerrorsÚcgutilsÚoptional)Ú	intrinsicÚoverload_method©Úviewerc                 C   s   | j rdgS g S )z;
    Return the modifier flags for integer arithmetic.
    Únsw)Úsigned)Úrettype© r   úh/home/ncw/WWW/www-new/content/articles/pi-bbp/venv/lib/python3.10/site-packages/numba/cpython/numbers.pyÚ_int_arith_flags   s   r   c                 C   ó\   |\}}|j \}}|  ||||j¡}|  ||||j¡}	|j||	t|jƒd}
t| ||j|
ƒS ©N)Úflags)ÚargsÚcastÚreturn_typeÚaddr   r
   ©ÚcontextÚbuilderÚsigr   ÚvaÚvbÚtaÚtbÚaÚbÚresr   r   r   Úint_add_impl#   ó   
r-   c                 C   r   r   )r   r   r    Úsubr   r
   r"   r   r   r   Úint_sub_impl,   r.   r0   c                 C   r   r   )r   r   r    Úmulr   r
   r"   r   r   r   Úint_mul_impl5   r.   r2   c              
   C   s°  |j |j ksJ ‚|  d¡}|  d¡}t ||¡}t ||¡}| | d||  |j¡¡| d||  d¡¡¡}	|j| |	¡dd‡ | ||¡}
| 	||¡}| d| 
||¡|¡}| d||¡}| ||¡}| |¡N\}}| | |
|¡ | ||¡ W d	  ƒ n1 s…w   Y  | | | |
|¡|¡ | | ||¡|¡ W d	  ƒ n1 s«w   Y  W d	  ƒ n1 sºw   Y  W d	  ƒ n1 sÉw   Y  | |¡| |¡fS )
a@  
    Reference Objects/intobject.c
    xdivy = x / y;
    xmody = (long)(x - (unsigned long)xdivy * y);
    /* If the signs of x and y differ, and the remainder is non-0,
     * C89 doesn't define whether xdivy is now the floor or the
     * ceiling of the infinitely precise quotient.  We want the floor,
     * and we have it iff the remainder's sign matches y's.
     */
    if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
        xmody += y;
        --xdivy;
        assert(xmody && ((y ^ xmody) >= 0));
    }
    *p_xdivy = xdivy;
    *p_xmody = xmody;
    r   é   ú==éÿÿÿÿT©Úlikelyú<ú!=N)Útyper   Úalloca_once_valueÚand_Úicmp_signedÚminvalÚif_thenÚnot_ÚsdivÚsremÚxorÚif_elseÚstorer/   r!   Úload)r#   r$   ÚtyÚxÚyÚZEROÚONEÚresdivÚresmodÚis_overflowÚxdivyÚxmodyÚy_xor_xmody_ltzÚxmody_istrueÚcondÚif_different_signsÚif_same_signsr   r   r   Úint_divmod_signed>   s:   

þþþ€û€örV   c                 C   s.   |j rt| ||||ƒS | ||¡| ||¡fS )zD
    Integer divmod(x, y).  The caller must ensure that y != 0.
    )r   rV   ÚudivÚurem)r#   r$   rG   rH   rI   r   r   r   Ú
int_divmodw   s   rY   c              	   C   sf  |\}}|j \}}|j}	t|	tjƒr|	j}	|  ||||	¡}
|  ||||	¡}tj||
j	dd}tj||
j	dd}|j
t ||¡dde\}}| | j ||f¡s\| ||¡ | ||¡ W d   ƒ n1 sfw   Y  | t| ||	|
|ƒ\}}| ||¡ | ||¡ W d   ƒ n1 sŽw   Y  W d   ƒ ||fS W d   ƒ ||fS 1 sªw   Y  ||fS )NÚquot©ÚnameÚremFr6   )r   r    Ú
isinstancer   ÚUniTupleÚdtyper   r   Úalloca_oncer:   rD   Úis_scalar_zeroÚerror_modelÚfp_zero_divisionrE   rY   )r#   r$   r%   r   Úzerodiv_messager&   r'   r(   r)   rG   r*   r+   rZ   r]   Úif_zeroÚif_non_zeroÚqÚrr   r   r   Ú_int_divmod_impl   s>   
ÿ€ùý
öû
öñrj   c                 C   s0   t | |||dƒ\}}t || |¡| |¡f¡S )Nzinteger divmod by zero)rj   r   Ú
pack_arrayrF   ©r#   r$   r%   r   rZ   r]   r   r   r   Úint_divmod_implŸ   s   
ÿÿrm   c                 C   s   t | |||dƒ\}}| |¡S )Nzinteger division by zero©rj   rF   rl   r   r   r   Úint_floordiv_impl¨   ó   
ÿ
ro   c                 C   sŒ   |\}}|j \}}|  ||||j¡}|  ||||j¡}	t ||	¡ | j |d¡ W d   ƒ n1 s3w   Y  | ||	¡}
t| ||j|
ƒS )N©zdivision by zero)	r   r   r    r   rf   rc   rd   Úfdivr
   r"   r   r   r   Úint_truediv_impl°   s   
ÿrs   c                 C   s   t | |||dƒ\}}| |¡S )Nzinteger modulo by zerorn   rl   r   r   r   Úint_rem_impl½   rp   rt   c                 C   s&   t |tjƒr| jjsd|jd > S dS )Nr5   r3   F)r^   r   ÚIntegerrc   Úraise_on_fp_zero_divisionÚbitwidth)r#   r    r   r   r   Ú_get_power_zerodiv_returnÅ   s
   ÿrx   c                    sR   t |jd tjƒ‰ |j‰t| ˆƒ‰‡ ‡‡fdd„}|  ||||¡}t| ||j|ƒS )z@
    a ^ b, where a is an integer or real, and b an integer
    r   c                    sÀ   ˆdƒ}ˆ| ƒ} |dk r0d}| }|dk rt ‚ˆ r/| dkr%ˆr!ˆS tdƒ‚| dkr/| dkr/dS nd}|}|dkr@t | t|ƒ¡S |dkrX|d@ rL|| 9 }|dL }| | 9 } |dksD|r^d| S |S )	Nr3   r   Tú&0 cannot be raised to a negative powerr5   Fé   ç      ð?)ÚOverflowErrorÚZeroDivisionErrorÚmathÚpowÚfloat)r*   r+   ri   ÚinvertÚexp©Ú
is_integerÚtpÚzerodiv_returnr   r   Ú	int_powerÖ   s4   €üz!int_power_impl.<locals>.int_power)r^   r   r   ru   r    rx   Úcompile_internalr
   )r#   r$   r%   r   r‡   r,   r   rƒ   r   Úint_power_implÎ   s   
r‰   c                    s  |j d j}t|tjƒst‚t|ƒdkrt‚|dk }t|ƒ}|j}t|tj	ƒ‰t
| |ƒ‰|  ˆ |d |j d |¡}|j}‡ ‡fdd„}	|dƒ}
|}|dkrc|d@ rV|	|
|ƒ}
|dL }|	||ƒ}|dksM|rˆrn‡fdd„}ndd„ }|  ˆ |t ||¡|
f¡}
|
S )	zH
    a ^ b, where a is an integer or real, and b a constant integer
    r3   rz   r   c                    s   ˆrˆ   | |¡S ˆ  | |¡S ©N)r1   Úfmul)r*   r+   )r$   r„   r   r   r1     s   zstatic_power_impl.<locals>.mulc                    s0   | dkrˆ rˆ S t dƒ‚| dkr| dkrdS | S )Nr   ry   r3   r5   )r}   ©r*   )r†   r   r   Úinvert_impl$  s   z&static_power_impl.<locals>.invert_implc                 S   s   d|  S )Nr{   r   rŒ   r   r   r   r   1  s   )r   Úvaluer^   ÚnumbersÚIntegralÚNotImplementedErrorÚabsr    r   ru   rx   r   r:   rˆ   r   Ú	signature)r#   r$   r%   r   r‚   r   r…   ÚvalÚltyr1   r,   r*   r   r   )r$   r„   r†   r   Ústatic_power_implù   s:   


üÿr–   c                 C   ó"   |j dg|¢R Ž }t| ||j|ƒS ©Nr8   ©r=   r
   r    ©r#   r$   r%   r   r,   r   r   r   Úint_slt_impl:  ó   r›   c                 C   r—   ©Nz<=r™   rš   r   r   r   Úint_sle_impl?  rœ   rž   c                 C   r—   ©Nú>r™   rš   r   r   r   Úint_sgt_implD  rœ   r¡   c                 C   r—   ©Nz>=r™   rš   r   r   r   Úint_sge_implI  rœ   r£   c                 C   r—   r˜   ©Úicmp_unsignedr
   r    rš   r   r   r   Úint_ult_implN  rœ   r¦   c                 C   r—   r   r¤   rš   r   r   r   Úint_ule_implS  rœ   r§   c                 C   r—   rŸ   r¤   rš   r   r   r   Úint_ugt_implX  rœ   r¨   c                 C   r—   r¢   r¤   rš   r   r   r   Úint_uge_impl]  rœ   r©   c                 C   r—   ©Nr4   r¤   rš   r   r   r   Úint_eq_implb  rœ   r«   c                 C   r—   ©Nr9   r¤   rš   r   r   r   Úint_ne_implg  rœ   r­   c           	      C   sH   |\}t |jd ƒ}| d||¡}| |¡}| |||¡}t| ||j|ƒS r˜   )r   r:   r=   ÚnegÚselectr
   r    )	r#   r$   r%   r   rH   rJ   ÚltzÚnegatedr,   r   r   r   Úint_abs_impll  s   
r²   c                 C   ó   |\}t | ||j|ƒS rŠ   ©r
   r    )r#   r$   r%   r   rH   r   r   r   Úuint_abs_implu  ó   rµ   c           	      C   sR   |j \}}|\}}|  ||||j¡}|  ||||j¡}| ||¡}t| ||j|ƒS rŠ   )r   r   r    Úshlr
   ©	r#   r$   r%   r   ÚvaltyÚamttyr”   Úamtr,   r   r   r   Úint_shl_implz  ó   
r¼   c           	      C   sh   |j \}}|\}}|  ||||j¡}|  ||||j¡}|jjr&| ||¡}n| ||¡}t| ||j|ƒS rŠ   )r   r   r    r   ÚashrÚlshrr
   r¸   r   r   r   Úint_shr_implƒ  s   
rÀ   c                 C   óR   |j \}}|\}}|  ||||j¡}|  ||||j¡}	| ||	¡}
t| ||j|
ƒS rŠ   )r   r   r    r<   r
   ©r#   r$   r%   r   ÚatÚbtÚavÚbvÚcavÚcbcr,   r   r   r   Úint_and_impl  r½   rÉ   c                 C   rÁ   rŠ   )r   r   r    Úor_r
   rÂ   r   r   r   Úint_or_impl˜  r½   rË   c                 C   rÁ   rŠ   )r   r   r    rC   r
   rÂ   r   r   r   Úint_xor_impl¡  r½   rÌ   c                 C   s:   |j \}|\}| |¡}|  ||||j¡}t| ||j|ƒS rŠ   )r   r®   r   r    r
   ©r#   r$   r%   r   Útypr”   r,   r   r   r   Úint_negate_implª  s
   
rÏ   c                 C   ó0   |j \}|\}|  ||||j¡}t| ||j|ƒS rŠ   ©r   r   r    r
   rÍ   r   r   r   Úint_positive_impl³  ó   rÒ   c                 C   sR   |j \}|\}| |t|jtd|jj dƒƒ¡}|  ||||j¡}t| ||j|ƒS )NÚ1é   )	r   rC   r   r:   ÚintÚwidthr   r    r
   rÍ   r   r   r   Úint_invert_implº  s
   "rØ   c                 C   s°  |\}t |jdƒ}t |jdƒ}t |jdƒ}| d||¡}| d||¡}	t ||j¡}
| d¡}| d¡}| d¡}| d	¡}| d
¡}| |||¡ | |¡ | 	||
¡ | 
|¡ W d  ƒ n1 sew   Y  | |¡ | |	||¡ W d  ƒ n1 sw   Y  | |¡ | 	||
¡ | 
|¡ W d  ƒ n1 s¡w   Y  | |¡ | 	||
¡ | 
|¡ W d  ƒ n1 sÁw   Y  | |¡ | |
¡}t| ||j|ƒS )z
    np.sign(int)
    r3   r5   r   r4   r    z.zeroz.postestz.posz.negz.exitN)r   r:   r¥   r=   r   ra   Úappend_basic_blockÚcbranchÚ
goto_blockrE   ÚbranchÚposition_at_endrF   r
   r    )r#   r$   r%   r   rH   ÚPOSÚNEGrJ   Úcmp_zeroÚcmp_posÚpresultÚbb_zeroÚ
bb_postestÚbb_posÚbb_negÚbb_exitr,   r   r   r   Úint_sign_implÃ  s>   




þÿþþ

rè   c                 C   s:   |j \}|\}|  ||||j¡}| |¡}t| ||j|ƒS rŠ   )r   r   r    r®   r
   rÍ   r   r   r   Úbool_negate_implí  ó
   
ré   c                 C   rÐ   rŠ   rÑ   rÍ   r   r   r   Úbool_unary_positive_implõ  rÓ   rë   c                  C   sÈ  t j} ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj	| | ƒtƒ ttj
| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| ƒtƒ ttj| ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ tt| | ƒtƒ t jD ]J} ttj| | ƒt ƒ ttj!| | ƒt"ƒ ttj#| | ƒt$ƒ ttj%| | ƒt&ƒ ttjt j'| ƒtƒ ttjt j'| ƒtƒ ttt j'| ƒtƒ tt(| ƒt)ƒ qœttjt j*t j*ƒt+ƒ ttj#t j*t j*ƒt+ƒ ttj!t j*t j*ƒt+ƒ ttj%t j*t j*ƒt+ƒ t j,D ]K} ttj| | ƒt+ƒ ttj!| | ƒt-ƒ ttj#| | ƒt.ƒ ttj%| | ƒt/ƒ ttjt j'| ƒtƒ ttjt j'| ƒtƒ ttt j'| ƒtƒ tt(| ƒt0ƒ qd S rŠ   )1r   ru   r   Úoperatorr!   r-   Úiaddr/   r0   Úisubr1   r2   ÚimulÚeqr«   Úner­   Úlshiftr¼   ÚilshiftÚrshiftrÀ   Úirshiftr®   rÏ   ÚposrÒ   r   r‰   ÚipowÚunsigned_domainÚltr¦   Úler§   Úgtr¨   Úger©   ÚFloatr’   rµ   ÚIntegerLiteralr›   Úsigned_domainrž   r¡   r£   r²   ©rG   r   r   r   Ú_implement_integer_operators  sR   

ør  c                  C   s’   t jt jfD ]@} ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒt	ƒ ttj
| | ƒt	ƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| ƒtƒ qd S rŠ   )r   ÚBooleanru   r   rì   r<   rÉ   ÚiandrÊ   rË   ÚiorrC   rÌ   Úixorr   rØ   r   r   r   r   Ú_implement_bitwise_operators6  s   ør  c                 C   ó   |j |Ž }t| ||j|ƒS rŠ   )Úfaddr
   r    rš   r   r   r   Úreal_add_implF  ó   
r	  c                 C   r  rŠ   )Úfsubr
   r    rš   r   r   r   Úreal_sub_implK  r
  r  c                 C   r  rŠ   )r‹   r
   r    rš   r   r   r   Úreal_mul_implP  r
  r  c                 C   sX   t  ||d ¡ | j |d¡ W d   ƒ n1 sw   Y  |j|Ž }t| ||j|ƒS )Nr3   rq   )r   rf   rc   rd   rr   r
   r    rš   r   r   r   Úreal_div_implU  s
   ÿ
r  c                 C   sÎ   |j |j ksJ ‚|j }|j}|  d|j g¡}t |||t |¡f¡}t |||¡}|jrQd|_	t 
| d¡¡}	|j\}
}}t| |	|
|ƒ\}}|	 ||¡ |	 |¡ t ||¡}| ||||f¡}|| |¡fS )Nz.numba.python.remÚlinkonce_odrÚentry)r:   ÚmoduleÚmanglerr   ÚFunctionTypeÚPointerTyper   Úget_or_insert_functionÚis_declarationÚlinkageÚ	IRBuilderrÙ   r   Úreal_divmod_func_bodyrE   Úretra   ÚcallrF   )r#   r$   rH   rI   Úfloattyr  ÚfnameÚfntyÚfnÚ	fnbuilderÚfxÚfyÚpmodÚdivÚmodÚquotientr   r   r   Úreal_divmod\  s    
r'  c              
   C   sê  t  ||j¡}t  ||j¡}t  ||j¡}| ||¡}| | ||¡|¡}| ||¡ | ||¡ | d¡}	| d¡}
| d¡}| d||	¡}| d||	¡}| d||	¡}|j	|ddk\}}|8 | 
d||¡}| |¡ | | ||¡|¡ | | ||¡|¡ W d   ƒ n1 sw   Y  W d   ƒ n1 sœw   Y  | | ||
|	¡}| ||¡ W d   ƒ n1 s»w   Y  W d   ƒ n1 sÊw   Y  ~~| |¡}| d||	¡}| |¡M tjtjdœ}|t|jƒ }|  tjt ||¡¡}|||gƒ}| ||¡}| ||¡}t|jd	ƒ}| d
||¡}| |||¡}| ||¡ W d   ƒ n	1 s3w   Y  t  ||¡$ | ||¡}| ||¡ | | ||¡|¡}| ||¡ W d   ƒ n	1 sfw   Y  | |¡| |¡fS )Nç        g       €r{   r9   r8   Tr6   )r€   Údoubleg      à?r    )r   ra   r:   Úfremrr   r  rE   Úfcmp_unorderedÚfcmp_orderedrD   r¥   r?   r  r¯   rF   r   Úfloat32Úfloat64ÚstrÚget_functionr~   Úfloorr   r“   r   Úifnotr‹   )r#   r$   ÚvxÚwxr#  ÚpdivÚ	pfloordivr%  r$  rJ   ÚNZEROrK   Ú
mod_istrueÚwx_ltzÚmod_ltzÚif_nonzero_modÚif_zero_modÚwx_ltz_ne_mod_ltzÚ
div_istrueÚrealtypemapÚrealtypeÚfloorfnÚfloordivÚfloordivdiffÚfloordivincrÚHALFÚpredr   r   r   r  r  sl   .


þ€û	ü€ö
ÿ
ÿôür  c              	   C   s4  |\}}t j||jdd}t j||jdd}|jt  ||¡ddc\}	}
|	( | j |d|¡sG| ||¡}| ||¡}| 	||¡ | 	||¡ W d   ƒ n1 sQw   Y  |
 t
| |||ƒ\}}| 	||¡ | 	||¡ W d   ƒ n1 sxw   Y  W d   ƒ n1 s‡w   Y  t  || |¡| |¡f¡S )NrZ   r[   r]   Fr6   ©zmodulo by zero)r   ra   r:   rD   rb   rc   rd   rr   r*  rE   r'  rk   rF   )r#   r$   r%   r   ÚlocrH   rI   rZ   r]   rf   rg   rh   ri   r   r   r   Úreal_divmod_implÞ  s2   ÿ€ø	ý€õÿrI  c              	   C   sô   |\}}t  ||j¡}|jt  ||¡ddQ\}}	| | j |d|¡s0| ||¡}
| |
|¡ W d   ƒ n1 s:w   Y  |	 t	| |||ƒ\}}
| |
|¡ W d   ƒ n1 s[w   Y  W d   ƒ n1 sjw   Y  t
| ||j| |¡ƒS )NFr6   rG  )r   ra   r:   rD   rb   rc   rd   r*  rE   r'  r
   r    rF   )r#   r$   r%   r   rH  rH   rI   r,   rf   rg   r]   Ú_r   r   r   Úreal_mod_implø  ó*   ÿ€úþ€÷
ÿrK  c              	   C   sô   |\}}t  ||j¡}|jt  ||¡ddQ\}}	| | j |d|¡s0| ||¡}
| |
|¡ W d   ƒ n1 s:w   Y  |	 t	| |||ƒ\}
}| |
|¡ W d   ƒ n1 s[w   Y  W d   ƒ n1 sjw   Y  t
| ||j| |¡ƒS )NFr6   rq   )r   ra   r:   rD   rb   rc   rd   rr   rE   r'  r
   r    rF   )r#   r$   r%   r   rH  rH   rI   r,   rf   rg   rZ   rJ  r   r   r   Úreal_floordiv_impl  rL  rM  c           
      C   s^   |\}}|j }| jr|  tj|¡}|||ƒ}n| d|jg¡}	| |	||f¡}t| ||j	|ƒS )Nzllvm.pow)
r  Úimplement_powi_as_math_callr0  r~   r   Údeclare_intrinsicr:   r  r
   r    )
r#   r$   r%   r   rH   rI   r  Úimpr,   r  r   r   r   Úreal_power_impl  s   rQ  c                 C   r—   r˜   ©r,  r
   r    rš   r   r   r   Úreal_lt_impl*  rœ   rS  c                 C   r—   r   rR  rš   r   r   r   Úreal_le_impl/  rœ   rT  c                 C   r—   rŸ   rR  rš   r   r   r   Úreal_gt_impl4  rœ   rU  c                 C   r—   r¢   rR  rš   r   r   r   Úreal_ge_impl9  rœ   rV  c                 C   r—   rª   rR  rš   r   r   r   Úreal_eq_impl>  rœ   rW  c                 C   r—   r¬   )r+  r
   r    rš   r   r   r   Úreal_ne_implC  rœ   rX  c                 C   s,   |j \}t ||¡}|  tj|¡}|||ƒS rŠ   )r   r   r“   r0  r~   Úfabs)r#   r$   r%   r   rG   Úimplr   r   r   Úreal_abs_implH  s   
r[  c                 C   s,   ddl m} | ||d ¡}t| ||j|ƒS ©Nr   ©Úmathimpl)Únumba.cpythonr^  Únegate_realr
   r    )r#   r$   r%   r   r^  r,   r   r   r   Úreal_negate_implO  s   ra  c                 C   rÐ   rŠ   rÑ   rÍ   r   r   r   Úreal_positive_implU  rÓ   rb  c                 C   s~  |\}t |jdƒ}t |jdƒ}t |jdƒ}t ||j¡}| d||¡}	| d||¡}
| |	¡{\}}| | ||¡ W d  ƒ n1 sEw   Y  |O | |
¡:\}}| | ||¡ W d  ƒ n1 shw   Y  | | ||¡ W d  ƒ n1 s€w   Y  W d  ƒ n1 sw   Y  W d  ƒ n1 sžw   Y  W d  ƒ n1 s­w   Y  | |¡}t| ||j	|ƒS )z
    np.sign(float)
    r3   r5   r   r    r8   N)
r   r:   r   ra   r,  rD   rE   rF   r
   r    )r#   r$   r%   r   rH   rÞ   rß   rJ   râ   Úis_posÚis_negÚgt_zeroÚnot_gt_zeroÚlt_zeroÚnot_lt_zeror,   r   r   r   Úreal_sign_impl\  s6   ÿÿý€ý€ÿ€ý
ri  Úrealc                 C   ó$   | j |||d}|j}t| |||ƒS ©N©rŽ   )Úmake_complexrj  r
   ©r#   r$   rÎ   rŽ   Úcplxr,   r   r   r   Úcomplex_real_impl›  ó   rq  Úimagc                 C   rk  rl  )rn  rs  r
   ro  r   r   r   Úcomplex_imag_impl¡  rr  rt  zcomplex.conjugatec                 C   sL   ddl m} |  ||jd |d ¡}| ||j¡|_| ¡ }t| ||j|ƒS r\  )	r_  r^  rn  r   r`  rs  Ú	_getvaluer
   r    )r#   r$   r%   r   r^  Úzr,   r   r   r   Úcomplex_conjugate_impl§  s
   rw  c                 C   s   t | |||ƒS rŠ   )r
   )r#   r$   rÎ   rŽ   r   r   r   Úreal_real_impl¯  s   rx  c                 C   s   t  |j¡}t| |||ƒS rŠ   )r   Úget_null_valuer:   r
   )r#   r$   rÎ   rŽ   r,   r   r   r   Úreal_imag_impl²  s   rz  c                 C   s   t | ||j|d ƒS ©Nr   r´   ©r#   r$   r%   r   r   r   r   Úreal_conjugate_impl¶  s   r}  c              	   C   s´  |\}}|j d }|j}| j|||d}| j|||d}	|  ||¡}
|j}| ¡ }|	 ¡ }|
 ¡ }|  |d¡}|  |d¡}| d|	j|¡}| d|	j|¡}| 	||¡}| 
|¡m\}}|! t| ||||fƒ}| j|||d}|j|
_|j|
_W d   ƒ n1 sw   Y  |. tjdtjdi| }t t ¡ |jgd ¡}t |||¡}| ||||f¡ W d   ƒ n1 s¹w   Y  W d   ƒ n1 sÈw   Y  | |¡}t| ||j|ƒS )Nr   rm  rÕ   r4   Únumba_cpowfÚ
numba_cpowé   )r   Úunderlying_floatÚmake_helperr  Ú_getpointerÚget_constantr,  rj  rs  r<   rD   Úcomplex_mul_implr   Ú	complex64Ú
complex128r   r  ÚVoidTyper:   r   r  r  rF   r
   r    )r#   r$   r%   r   ÚcaÚcbrG   Úftyr*   r+   Úcr  ÚpaÚpbÚpcÚTWOrJ   Úb_real_is_twoÚb_imag_is_zeroÚb_is_twoÚthenÚ	otherwiser,   ÚcresÚ	func_namer  Úcpowr   r   r   Úcomplex_power_impl¿  sH   

ûþýø€ø
r™  c                 C   óŠ   |\}}|j d }| j|||d}| j|||d}|  ||¡}	|j}
|j}|j}|j}| |
|¡|	_| ||¡|	_|	 ¡ }t| ||j|ƒS ©Nr   rm  )r   rn  rj  rs  r  ru  r
   r    ©r#   r$   r%   r   ÚcxÚcyrG   rH   rI   rv  r*   r+   rŒ  Údr,   r   r   r   Úcomplex_add_implë  ó   
r   c                 C   rš  r›  )r   rn  rj  rs  r  ru  r
   r    rœ  r   r   r   Úcomplex_sub_implû  r¡  r¢  c                 C   sº   |\}}|j d }| j|||d}| j|||d}|  ||¡}	|j}
|j}|j}|j}| |
|¡}| ||¡}| |
|¡}| ||¡}| ||¡|	_| ||¡|	_|	 ¡ }t| ||j	|ƒS )z'
    (a+bi)(c+di)=(ac-bd)+i(ad+bc)
    r   rm  )
r   rn  rj  rs  r‹   r  r  ru  r
   r    )r#   r$   r%   r   r  rž  rG   rH   rI   rv  r*   r+   rŒ  rŸ  ÚacÚbdÚadÚbcr,   r   r   r   r…    s"   
r…  Únanc                 C   ó(   dd„ }|   ||||¡}t| ||j|ƒS )Nc                 S   sÈ   | j }| j}|j }|j}|s|stdƒ‚t|ƒt|ƒkr>|s#tttƒS || }|||  }t|||  | |||  | ƒS |sEtttƒS || }|| | }t| j | | j | | j| | j  | ƒS )Nzcomplex division by zero)rj  rs  r}   r’   ÚcomplexÚNAN)r*   r+   ÚarealÚaimagÚbrealÚbimagÚratioÚdenomr   r   r   Úcomplex_div%  s.   
þ
þz%complex_div_impl.<locals>.complex_div©rˆ   r
   r    )r#   r$   r%   r   r±  r,   r   r   r   Úcomplex_div_impl$  s   r³  c           	      C   sn   ddl m} |j\}|\}| j|||d}|  ||¡}| ||j¡|_| ||j¡|_| ¡ }t| ||j	|ƒS )Nr   r]  rm  )
r_  r^  r   rn  r`  rj  rs  ru  r
   r    )	r#   r$   r%   r   r^  rÎ   r”   Úcmplxr,   r   r   r   Úcomplex_negate_implD  s   rµ  c                 C   r³   rŠ   r´   ©r#   r$   r%   r   r”   r   r   r   Úcomplex_positive_implP  r¶   r·  c                 C   ór   |\}}|j d }| j|||d}| j|||d}| d|j|j¡}	| d|j|j¡}
| |	|
¡}t| ||j|ƒS )Nr   rm  r4   )r   rn  r,  rj  rs  r<   r
   r    )r#   r$   r%   r   r  rž  rÎ   rH   rI   Úreals_are_eqÚimags_are_eqr,   r   r   r   Úcomplex_eq_implU  ó   
r»  c                 C   r¸  )Nr   rm  r9   )r   rn  r+  rj  rs  rÊ   r
   r    )r#   r$   r%   r   r  rž  rÎ   rH   rI   Úreals_are_neÚimags_are_ner,   r   r   r   Úcomplex_ne_impla  r¼  r¿  c                 C   r¨  )z)
    abs(z) := hypot(z.real, z.imag)
    c                 S   s   t  | j| j¡S rŠ   )r~   Úhypotrj  rs  )rv  r   r   r   Úcomplex_absq  s   z%complex_abs_impl.<locals>.complex_absr²  )r#   r$   r%   r   rÁ  r,   r   r   r   Úcomplex_abs_implm  s   rÂ  znumber.itemc                 C   s   |d S )z;
    The no-op .item() method on booleans and numbers.
    r   r   r|  r   r   r   Únumber_item_implŽ  s   rÃ  c                 C   s:   |j \}|\}|  ||||j¡}| |¡}t| ||j|ƒS rŠ   )r   r   r    r@   r
   )r#   r$   r%   r   rÎ   r”   Úistruer,   r   r   r   Únumber_not_implš  rê   rÅ  c                 C   s
   |\}|S rŠ   r   r¶  r   r   r   Úbool_as_bool¡  s   rÆ  c                 C   ó   |\}|  d|t|jdƒ¡S )Nr9   r   )r¥   r   r:   r¶  r   r   r   Úint_as_bool¦  ó   rÈ  c                 C   rÇ  )Nr9   r(  )r+  r   r:   r¶  r   r   r   Úfloat_as_bool«  rÉ  rÊ  c                 C   s^   |j \}|\}|  |||¡}|j|j}}t|jdƒ}	| d||	¡}
| d||	¡}| |
|¡S )Nr(  r9   )r   rn  rj  rs  r   r:   r+  rÊ   )r#   r$   r%   r   rÎ   r”   r´  rj  rs  ÚzeroÚreal_istrueÚimag_istruer   r   r   Úcomplex_as_bool°  s   rÎ  c                 C   s$   |   ||j|j¡}|  |||j|¡S rŠ   )Úget_constant_genericÚliteral_typeÚliteral_valuer   ©r#   r$   ÚfromtyÚtotyr”   Úlitr   r   r   Úliteral_int_to_numberÈ  s   ýrÖ  c                 C   sX   |j |j kr|S |j |j k r| ||  |¡¡S |jr#| ||  |¡¡S | ||  |¡¡S rŠ   )rw   ÚtruncÚget_value_typer   ÚsextÚzext©r#   r$   rÓ  rÔ  r”   r   r   r   Úinteger_to_integerÔ  s   rÜ  c                 C   s   |  ||  |¡¡S rŠ   )ÚinttoptrrØ  rÛ  r   r   r   Úinteger_to_voidptrã  s   rÞ  c                 C   s.   |   |¡}|j|jk r| ||¡S | ||¡S rŠ   )rØ  rw   ÚfpextÚfptrunc©r#   r$   rÓ  rÔ  r”   r•   r   r   r   Úfloat_to_floatç  s   
râ  c                 C   s(   |   |¡}|jr| ||¡S | ||¡S rŠ   )rØ  r   ÚsitofpÚuitofprá  r   r   r   Úinteger_to_floatï  ó   
rå  c                 C   s(   |   |¡}|jr| ||¡S | ||¡S rŠ   )rØ  r   ÚfptosiÚfptouirá  r   r   r   Úfloat_to_integer÷  ræ  ré  c                 C   s@   |   ||||j¡}|  |jd¡}|  ||¡}||_||_| ¡ S r{  )r   r  r„  rn  rj  rs  ru  )r#   r$   rÓ  rÔ  r”   rj  rs  r´  r   r   r   Únon_complex_to_complexÿ  s   rê  c           	      C   sX   |j }|j }| j|||d}|  ||¡}|  ||j||¡|_|  ||j||¡|_| ¡ S rl  )r  rn  r   rj  rs  ru  )	r#   r$   rÓ  rÔ  r”   ÚsrctyÚdsttyÚsrcÚdstr   r   r   Úcomplex_to_complex
  s   rï  c                 C   s   |   |||¡S rŠ   )Úis_truerÛ  r   r   r   Úany_to_boolean  s   rñ  c                 C   s$   |  |t d¡¡}|  ||tj|¡S )Né    )rÚ  r   ÚIntTyper   r   Úint32)r#   r$   rÓ  rÔ  r”   Úasintr   r   r   Úboolean_to_any  s   rö  c                 C   s"   |   ||j|j¡}|  ||j|¡S rŠ   )rÏ  rÐ  rÑ  rð  rÒ  r   r   r   Úliteral_int_to_boolean  s   ýr÷  c                 C   s4   |j }|  |||j¡}|  |||j¡}t ||f¡S rŠ   )r  rÏ  rj  rs  r   Úliteral_struct)r#   r$   rG   Úpyvalr‹  rj  rs  r   r   r   Úconstant_complex,  s   rú  c                 C   s&   t |tjƒr
t|ƒ}|  |¡}||ƒS rŠ   )r^   ÚnpÚbool_ÚboolrØ  )r#   r$   rG   rù  r•   r   r   r   Úconstant_integer3  s   
rþ  c                 C   sL   t | tjtjfƒr"t |tjjƒr$| j|jjkrt 	d¡‚dd„ }|S dS dS )z) Typing for the np scalar 'view' method. zOChanging the dtype of a 0d array is only supported if the itemsize is unchangedc                 S   s
   t | |ƒS rŠ   r   )ÚscalarÚviewtyr   r   r   rZ  M  s   
zscalar_view.<locals>.implN)
r^   r   rý   ru   ÚabstractÚ	DTypeSpecrw   r`   r   ÚTypingError)rÿ  r   rZ  r   r   r   Úscalar_viewD  s   ÿÿ÷r  ÚviewrŠ   )¤r~   r   Únumpyrû  rì   Úllvmliter   Úllvmlite.irr   Únumba.core.imputilsr   r   r   r   r   r	   r
   Ú
numba.corer   r   r   r   r   r   Únumba.core.extendingr   r   Únumba.cpython.unsafe.numbersr   r   r-   r0   r2   rV   rY   rj   Údivmodru   rm   rB  Ú	ifloordivro   ÚtruedivÚitruedivrs   r%  Úimodrt   rx   r‰   r   rþ   r÷   rý   r–   r›   rž   r¡   r£   r¦   r§   r¨   r©   r«   r­   r²   rµ   r¼   rÀ   rÉ   rË   rÌ   rÏ   rÒ   rØ   rè   ré   rë   rð   Úbooleanrñ   rù   rú   rû   rü   r®   rö   r  r  r	  r  r  r  r'  r  rI  rK  rM  rQ  rS  rT  rU  rV  rW  rX  r[  ra  rb  ri  rG   r!   rí   r/   rî   r1   rï   r’   ÚComplexrq  rt  rw  rx  rz  r}  Úclsr™  r   r¢  r…  r€   rª  r³  rµ  r·  r»  r¿  rÂ  r  ÚNumberrÃ  rÅ  rý  rÆ  rÈ  rÊ  rÎ  r@   rÖ  rÜ  ÚvoidptrrÞ  râ  rå  ré  rê  rï  ÚAnyrñ  rö  ÚBooleanLiteralr÷  rú  rþ  r  r   r   r   r   Ú<module>   s¢   $ 			9

	+=							*0l







) 










		




	




